

Use of LC-MS/MS in the Compliance Monitoring of Priority (Hazardous) Substances and Specific Pollutants under the Water Framework Directive

Simon O'Toole, EPA.

Hyphenated Analytical Techniques - Fundamentals, Applications and Challenges The State Laboratory, 19/10/2017

Presentation outline

- Introduction
- Fundamentals
 - Water Framework Directive
 - Priority (Hazardous) Substances, Specific Pollutants
 - Environmental Quality Standards
- Applications
 - Pesticides & Herbicides
- Challenges
 - Priority Substances Directive 2013
 - Watch List Decision 2015/495
 - Priority Substances Review Shortlist
- Conclusion

The Water Framework Directive 2000/60/EC

epa epa e Brandente Contactor Agence

EQSs & PNECs

- Environmental Quality Standard (EQS) Retrospective level of environmental safety
 - Concentration below which the ecological functions and the community structure of the water body are not changed (WFD 2000, Lepper 2006)
- Predicted No Effect Concentration (PNEC) Prospective level of environmental safety
 - Concentration below which adverse effects are not expected to occur (TGD 2003)
- EQS(PNEC) = Most reliable ecotox data (µg/L) / Assessment Factor

Ecotoxicity tests

EPA WFD micropollutant analysis; LC-MS, GC-MS, ICP-MS, IC

	Priority Hazardous Substances	Priority Substances	Specific Pollutants	Others
PAHs (GC-MS)	Ant, FI, BbFI, BkFL, BaP, Ipyr, BghiPer			
Metals (ICP-MS)	Cd, Hg	Pb, Ni	Zn, As, Cr, Cu, F	
VOCs (GC-MS)		Benzene, DCM, 1,2- dichloroethane, Naphthalene	Toluene, xylenes (o,m,p)	
Pesticides & Herbicides (LC-MS/MS)		Simazine, atrazine, terbutryn, diuron, isoproturon	Linuron, glyphosate	Malathion, dichlobenil, 2,6-dichlorobenzamide, AMPA, 2,4-D, MCPA, mecoprop
Biota	Hg, HCB, HCBD (Marine Institute)			
Non WFD	Dioxins & BFRs (State Laboratory & Eurofins Gfa DE)			

Applications; Old LCMS equipment - Varian 320 MS

Applications; New LCMS equipment Agilent 6470 LC-MS

EPA LC-MS applications

- Three groups of substances;
- I. Triazine herbicides;
 - > Simazine, atrazine, terbutryn.
- II. Uron herbicides
 - > Linuron, isoproturon, diuron.
- III. Phenoxyacetic acid herbicides;
 - Mecoprop, MCPA, 2,4-D
- Also glyphosate & AMPA

Mecoprop

COO Evidential Potection Agency & Baselericative of Calabeleri

EPA LC-MS applications

- Direct injection (20µl) rather than in-line sample enrichment/SPE (5000µl)
- ESI, higher sensitivity (<10ng/L), S/N ratios, precision and scan speed</p>
- Good working range (10-1000 ng/L), excellent linearity (r²>0.999)
- Mobile Phases; water and acetonitrile, gradient flow
- Agilent Zorbax Eclipse Plus C18 Rapid Resolution HD 2.1 x 50mm, 1.8µm

EPA Pesticides & Herbicides Suite

Compound Name	Precursor Ion	Product Ion	Fragmentor	Collision Energy	Cell Accelerator Voltage	Polarity
Simazine	202.1	132	380	20	5	Positive
Simazine	202.1	124.1	380	20	5	Positive
Atrazine	216	174.1	380	15	3	Positive
Atrazine	216	104	380	30	3	Positive
Terbutryn	242.1	186.1	380	15	5	Positive
Terbutryn	242.1	91	380	25	5	Positive
МСРА	201	143	380	16	3	Negative
МСРА	199	141	380	8	3	Negative
Mecoprop	213	141	380	8	3	Negative
Mecoprop	213	105	380	15	3	Negative
2,4-D	221	163	380	9	7	Negative
2,4-D	219	161	380	9	7	Negative
Diuron	235	72	380	20	5	Positive
Diuron	233	72	380	20	5	Positive
Isoproturon	207.2	165.1	380	10	5	Positive
Isoproturon	207.2	72	380	20	5	Positive
Linuron	249	182	380	15	5	Positive
Linuron	249	160	380	20	5	Positive

Challenges; 12 new Priority Substances from 2018

Substance		2009/90/EC LOQ	
Substance	EQS HB/1	µg/L	ng/L
Perfluorooctane sulfonic acid (PFOS) + derivatives	6.5 x 10 ⁻⁴	0.195 x 10 ⁻³	0.195
Dioxins and dioxin-like compounds	0.008 µg/kg	2.4 x 10 ⁻³	2.4 ng/kg
Cypermethrin	8 x 10 ⁻⁵	24 x 10 ⁻⁶	0.024 x 10 ⁻³
Heptachlor and heptachlor epoxide	2 x 10 ⁻⁷	0.06 x 10 ⁻⁶	0.06 x 10 ⁻³
Aclonifen	0.12	36 x 10 ⁻³	36
Dicofol	1.3 x 10 ⁻³	0.39 x 10 ⁻³	0.39
Quinoxyfen	0.15	45 x 10 ⁻³	45
Bifenox	0.012	3.6 x 10 ⁻³	3.6
Terbutryn	0.065	19.5 x 10 ⁻³	19.5
Cybutryne (Irgarol)	2.5 x 10 ⁻³	0.75 x 10 ⁻³	0.75
Dichlorvos	6 x 10 ⁻⁴	0.18 x 10 ⁻³	0.18
Hexabromocyclododecane (HBCDD)	1.6 x 10 ⁻³	0.48 x 10 ⁻³	0.48

CPO Environmental Protection Agency And Advanced Fund Sector

Challenges; Watch List substances

Name of substance	LOD (ng/l)
17-Alpha-ethinylestradiol (EE2)	0.035
17-Beta-estradiol (E2)	0.4
Estrone (E1)	0.4
Diclofenac	10
2,6-Ditert-butyl-4-methylphenol	3160
2-Ethylhexyl 4-methoxycinnamate	6000
Erythromycin, clarithromycin, azithromycin	90
Methiocarb	10
Imidacloprid, thiacloprid, thiamethoxam, clothianidin, acetamiprid	9
Oxadiazon	88
Tri-allate	670

Challenges; Priority Substances Review Group Short list

Priority Substance Candidate	Comment	
Omethoate/dimethoate	Insecticide PPP	
Malathion	Insecticide PPP	
Nicosulfuron	Herbicide PPP	
Selenium	Metal	
Silver	Metal	
Uranium	Metal	
Permethrin		
Deltamethrin	Pyrethroid Insecticides	
Bifenthrin		
Esfenvalerate		

- EQSs currently being derived by JRC
- MSs encouraged to include these as Specific Pollutants

Conclusion - EPA current activities

- Significant investment in new laboratory equipment LC-MS, GC-MS (X2), ICP-MS
- Involved at various levels in EU WFD Chemicals Working Groups and work with DHPLG in relation to the WFD priority substances portfolio
- Scoping study on new PSs in Irish aquatic environment
- Significant funding of the EPA Research Pillar SAFE WATER
 - Emerging pollutants, priority substances, endocrine disruptors and emerging risks such as pathogens (including antibiotic resistant bacteria and viruses), cyanotoxins and nanomaterials
- Membership of the NORMAN Network Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

Conclusion - Future challenges

- Challenges exist with regard to LOQs of new Priority Substances (& Watch List steroidal hormones) from 2018
- Increased workload from new Priority Substances list, Watch List, PS candidates, River Basin Specific Pollutants
- Derivation of new EQSs for Irish Specific Pollutants
- Staffing numbers to effectively fulfil new commitments?

EQSs & MCPA review

Thanks for your attention